嵌入结构多态
package main_test
import (
"fmt"
"testing"
)
type Widget struct {
X, Y int
}
type Label struct {
Widget
Text string
}
type Button struct {
Label // Embedding (delegation)
}
type ListBox struct {
Widget // Embedding (delegation)
Texts []string // Aggregation
Index int // Aggregation
}
type Painter interface {
Paint()
}
type Clicker interface {
Click()
}
func (label Label) Paint() {
fmt.Printf("%p:Label.Paint(%q)\n", &label, label.Text)
}
// Button.Paint() 接口可以通过 Label 的嵌入带到新的结构体,
// 如果 Button.Paint() 不实现的话,会调用 Label.Paint() ,
// 所以,在 Button 中声明 Paint() 方法,相当于Override。
func (button Button) Paint() { // Override
fmt.Printf("Button.Paint(%s)\n", button.Text)
}
func (button Button) Click() {
fmt.Printf("Button.Click(%s)\n", button.Text)
}
func (listBox ListBox) Paint() {
fmt.Printf("ListBox.Paint(%q)\n", listBox.Texts)
}
func (listBox ListBox) Click() {
fmt.Printf("ListBox.Click(%q)\n", listBox.Texts)
}
func NewButton(x int, y int, text string) Button{
return Button{Label{Widget{x, y}, text}}
}
func TestDuck(t *testing.T){
label := Label{Widget{1, 2}, "s"}
button1 := Button{Label{Widget{10, 70}, "OK"}}
button2 := NewButton(50, 70, "Cancel")
listBox := ListBox{Widget{10, 40},
[]string{"AL", "AK", "AZ", "AR"}, 0}
for _, painter := range []Painter{label, listBox, button1, button2} {
painter.Paint()
}
for _, widget := range []interface{}{label, listBox, button1, button2} {
widget.(Painter).Paint()
if clicker, ok := widget.(Clicker); ok {
clicker.Click()
}
fmt.Println() // print a empty line
}
}
//我们可以使用接口来多态,
也可以使用 泛型的 interface{} 来多态,
但是需要有一个类型转换
反转控制
package main_test
import "errors"
type IntSet struct {
data map[int]bool
}
func NewIntSet() IntSet {
return IntSet{make(map[int]bool)}
}
type UndoableIntSet struct { // Poor style
IntSet // Embedding (delegation)
functions []func()
}
func (set *IntSet) Add(x int) {
set.data[x] = true
}
func (set *IntSet) Delete(x int) {
delete(set.data, x)
}
func (set *IntSet) Contains(x int) bool {
return set.data[x]
}
func NewUndoableIntSet() UndoableIntSet {
return UndoableIntSet{NewIntSet(), nil}
}
func (set *UndoableIntSet) Add(x int) { // Override
if !set.Contains(x) {
set.data[x] = true
set.functions = append(set.functions, func() { set.Delete(x) })
} else {
set.functions = append(set.functions, nil)
}
}
func (set *UndoableIntSet) Delete(x int) { // Override
if set.Contains(x) {
delete(set.data, x)
set.functions = append(set.functions, func() { set.Add(x) })
} else {
set.functions = append(set.functions, nil)
}
}
func (set *UndoableIntSet) Undo() error {
if len(set.functions) == 0 {
return errors.New("No functions to undo")
}
index := len(set.functions) - 1
if function := set.functions[index]; function != nil {
function()
set.functions[index] = nil // For garbage collection
}
set.functions = set.functions[:index]
return nil
}
反转依赖
package main_test
import "errors"
type Undo []func()
func (undo *Undo) Add(function func()) {
*undo = append(*undo, function)
}
func (undo *Undo) Undo() error {
functions := *undo
if len(functions) == 0 {
return errors.New("No functions to undo")
}
index := len(functions) - 1
if function := functions[index]; function != nil {
function()
functions[index] = nil // For garbage collection
}
*undo = functions[:index]
return nil
}
type IntSet struct {
data map[int]bool
undo Undo
}
func NewIntSet() IntSet {
return IntSet{data: make(map[int]bool)}
}
func (set *IntSet) Undo() error {
return set.undo.Undo()
}
func (set *IntSet) Contains(x int) bool {
return set.data[x]
}
func (set *IntSet) Add(x int) {
if !set.Contains(x) {
set.data[x] = true
set.undo.Add(func() { set.Delete(x) })
} else {
set.undo.Add(nil)
}
}
func (set *IntSet) Delete(x int) {
if set.Contains(x) {
delete(set.data, x)
set.undo.Add(func() { set.Add(x) })
} else {
set.undo.Add(nil)
}
}
//控制反转
//不再由 控制逻辑 Undo 来依赖业务逻辑 IntSet,而是由业务逻辑 IntSet 来依赖 Undo 。
//其依赖的是其实是一个协议,这个协议是一个没有参数的函数数组。
//我们也可以看到,我们 Undo 的代码就可以复用了